Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway.

نویسندگان

  • Yasuki Higaki
  • Toshio Mikami
  • Nobuharu Fujii
  • Michael F Hirshman
  • Katsuhiro Koyama
  • Tetsuya Seino
  • Keitaro Tanaka
  • Laurie J Goodyear
چکیده

We determined the acute effects of oxidative stress on glucose uptake and intracellular signaling in skeletal muscle by incubating muscles with reactive oxygen species (ROS). Xanthine oxidase (XO) is a superoxide-generating enzyme that increases ROS. Exposure of isolated rat extensor digitorum longus (EDL) muscles to Hx/XO (Hx/XO) for 20 min resulted in a dose-dependent increase in glucose uptake. To determine whether the mechanism leading to Hx/XO-stimulated glucose uptake is associated with the production of H2O2, EDL muscles from rats were preincubated with the H2O2 scavenger catalase or the superoxide scavenger superoxide dismutase (SOD) prior to incubation with Hx/XO. Catalase treatment, but not SOD, completely inhibited the increase in Hx/XO-stimulated 2-deoxyglucose (2-DG) uptake, suggesting that H2O2 is an intermediary leading to Hx/XO-stimulated glucose uptake with incubation. Direct H2O2 also resulted in a dose-dependent increase in 2-DG uptake in isolated EDL muscles, and the maximal increase was threefold over basal levels at a concentration of 600 micromol/l H2O2. H2O2-stimulated 2-DG uptake was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin, but not the nitric oxide inhibitor NG-monomethyl-l-arginine. H2O2 stimulated the phosphorylation of Akt Ser473 (7-fold) and Thr308 (2-fold) in isolated EDL muscles. H2O2 at 600 micromol/l had no effect on ATP concentrations and did not increase the activities of either the alpha1 or alpha2 catalytic isoforms of AMP-activated protein kinase. These results demonstrate that acute exposure of muscle to ROS is a potent stimulator of skeletal muscle glucose uptake and that this occurs through a PI3K-dependent mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ganoderma lucidum extract stimulates glucose uptake in L6 rat skeletal muscle cells.

The effect of Ganoderma lucidum extract on glucose uptake was studied in L6 rat skeletal muscle cells. G. lucidum extract increased glucose uptake about 2-fold compared to control. The extract stimulated the activity of phosphatidylinositol (PI) 3-kinase which is a major regulatory molecule in the glucose uptake pathway. About 7-fold increased activity of a PI 3-kinase was observed after treatm...

متن کامل

Electrical Stimuli Release ATP to Increase GLUT4 Translocation and Glucose Uptake via PI3Kγ-Akt-AS160 in Skeletal Muscle Cells

Skeletal muscle glucose uptake in response to exercise is preserved in insulin-resistant conditions, but the signals involved are debated. ATP is released from skeletal muscle by contractile activity and can autocrinely signal through purinergic receptors, and we hypothesized it may influence glucose uptake. Electrical stimulation, ATP, and insulin each increased fluorescent 2-NBD-Glucose (2-NB...

متن کامل

Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway.

Recently published data have provided evidence that nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) are signaling intermediates in the pathway through which muscle contraction stimulates glucose transport. As exercise promotes both NO production and calcium flux, we examined the relationships between NO-stimulated glucose uptake and calcium-, contraction-, and phosphatidylinositol-3...

متن کامل

General aspects of muscle glucose uptake.

Glucose uptake in peripheral tissues is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. Studies have shown the existence of two major signaling pathways that lead to the translocation of GLUT4. The first, and widely investigated, is the insulin activated signaling pathway through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The second is t...

متن کامل

Ciliary Neurotrophic Factor Stimulates Muscle Glucose Uptake by a PI3-Kinase–Dependent Pathway That Is Impaired With Obesity

OBJECTIVE Ciliary neurotrophic factor (CNTF) reverses muscle insulin resistance by increasing fatty acid oxidation through gp130-LIF receptor signaling to the AMP-activated protein kinase (AMPK). CNTF also increases Akt signaling in neurons and adipocytes. Because both Akt and AMPK regulate glucose uptake, we investigated muscle glucose uptake in response to CNTF signaling in lean and obese mic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 294 5  شماره 

صفحات  -

تاریخ انتشار 2008